This study concluded that UCB‐derived MSC injection under ultrasound guidance without surgical repair or bioscaffold resulted in the partial healing of full‐thickness rotator cuff tendon tears in a rabbit model. Histology revealed that UCB‐derived MSCs induced regeneration of rotator cuff tendon tears and that the regenerated tissue was predominantly composed of type I collagens. In addition, motion analysis showed better walking capacity after MSC injection than HA or normal saline injection. These results suggest that ultrasound‐guided UCB‐derived MSC injection may be a useful conservative treatment for full‐thickness rotator cuff tendon tear repair.
This study suggests that after the acquisition of a mature phenotype, Wharton’s jelly mesenchymal stem cell (WJMSCs)-derived cells may maintain their immune privilege. This evidence, which deserves much work to be confirmed in vivo and in other mesenchymal stem cells (MSCs) populations, may provide a formal proof of the good results globally achieved with WJMSCs as cellular therapy vehicle.
The ability of these cells to promote chondrogenesis, without eliciting an immunogenic response, makes them an excellent candidate for providing cell-based cartilage repair in an off-the-shelf fashion. Moreover, use of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) for cartilage repair in older patients will address concerns related to MSC number and immunomodulatory capacity with autologous harvest in aging patients, making this technique a promising advancement in the treatment of cartilage injury for this demographic.
1934 Civic Circle
Amarillo, TX 79109
© 2020 All Rights Reserved | Regenerative Medicine of Amarillo